
 

 

2.2.4.2. Verification of understanding requirements 

Practical guidance – cross-domain and maritime 

Authors: ALADDIN demonstrator project 

Background 

Understanding the state of the RAS and its operating environment is critical for system to 
operate safely while achieving its intended goals. 

Regulations for condition monitoring systems can be found in the ISO standards 13372:2012 
[1] and 26262-1:2018 [2] for machines and road vehicles, respectively. The data collection 
and management specification for automated vehicle trials can be found from [3]. 

This Body of Knowledge entry describes the verification of understanding requirements 
defined in ref1. The verification is demonstrated by testing the supervised learning and 
semi-supervised learning fault diagnostics methods developed in the project ALADDIN. In 
addition to the datasets collected from British Oceanographic Data Centre (BODC) [4], 
additional data collected in the field tests led by SOCIB and the National Oceanography 
Centre (NOC) are applied in this entry to test the algorithms’ fault diagnostics performance, 
and to verify the understating requirements. 

Stage Input and Output Artefacts 

Required input/existing knowledge: 

• List of all sensors on the RAS – the list should clearly label any redundant sensors on 
over-observed systems 

• Signal output from all sensors, including both readings and the associated time 
stamps, synced for the RAS 

• Knowledge of the dynamics of the RAS (desirable, especially for under-observed 
systems) 

• Failure Mode Effect Analysis (FMEA) for the RAS (desirable), which can be completed 
according to the IEC 60812:2018 standards [5] 

• Hazard and Operability study (HAZOP) for the RAS (desirable), which can be 
completed according to the IEC 61882:2016 standards [6] 

• Formal description of the baseline RAS behaviour 

• Metadata (e.g. calibration, system configuration, deployment reports or operator 
logs) to enable understanding of wider context 

• The deployment data applied in this study needs clear labelling of the faults, ideally 
with fault starting and ending times indicated 

• Training and validation datasets for baseline RAS behaviour – data from multiple RAS 
covering a wide range of normal missions as well as missions with faults would be 
ideal. 

                                                      
1 https://www.york.ac.uk/assuring-autonomy/guidance/body-of-knowledge/implementation/2-2/2-
2-1/2-2-1-2/ 
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• Testing datasets (including datasets collected previously and the datasets to be 
collected by the scheduled field tests) for anomalous RAS behaviour – data of a wide 
range of anomalies would be ideal. Additionally, it is important to log the start and 
end times of the anomalous behaviours. 

Assumptions 

• Sensing requirements, as defined in ref2, are met (i.e. the installed sensors are 
appropriate for the RAS) 

• Understanding requirements, as defined in ref3, are met 

• The training, validation and testing datasets are collected by similar systems 

• The incoming volume of data is manageable in real-time with the installed 
processing power 

 
Stage input and output artefacts 

 

Figure 1: Summary procedure to verify understanding requirements 

1. Data cleaning: the data applied for the training, validation and test datasets, as well 
as the RAS real-time implementation data need to be cleaned through the following 
steps 

a. Signal processing and data treatment according to the data collection and 
management specification for automated vehicle trials [3] 

b. Feature engineering: 
i. Design additional virtual signals derived from dynamic models to 

better present the RAS’s operating status and its environment 
ii. Data fusion to combine the virtual and actual signals 

c. Depending on the type of RAS and characteristics of the data, some 
application may need filtering of transient effects and measurement noise to 
reduce the computational cost and improve real-time performance 

i. In the case of Unmanned Aerial Vehicles, reserving full dynamic 
effects can be important 

                                                      
2 https://www.york.ac.uk/assuring-autonomy/guidance/body-of-knowledge/implementation/2-2/2-
2-1/2-2-1-1/cross-domain-maritime/ 
3 https://www.york.ac.uk/assuring-autonomy/guidance/body-of-knowledge/implementation/2-2/2-
2-1/2-2-1-2/ 
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ii. In the case for underwater gliders, the RAS can spend significant time 
in steady-state operations. Reducing/removing transient effects can 
beneficial 

2. Dataset creation: creation of suitable datasets for the development of the anomaly 
detection system. Data augmentation (see Section 2.3.1) is required in many 
applications to achieve desired testing/deployment performance of the model 

a. Training dataset 
b. Validation dataset for hyperparameter selection and training 
c. Test dataset: 

i. Previous deployment data has not been seen by the model during 
training 

3. Development: the fault diagnostics method with domain adaption to ensure faults 
can be inferred by the model in the target domain 

4. Training: the anomaly detection system is trained using the previously prepared 
training dataset. Different signals can be selected as input during this stage to assess 
improvements in performance (prediction accuracy and computational cost) 

5. Validation: the hyperparameters of the network (e.g. size of the Deep Neural 
Networks (DNNs)) are selected with a sensitivity analysis to improve prediction 
accuracy and computational cost and prevent overfitting on the validation dataset 

6. Test: the ability of the fault diagnostics system in correctly identifying the fault 
types. See the summary of fault diagnostics performance on the test datasets in 
Figure 2 

7. Deployment:  The data collected in the FRONTIERS project in Mallorca, Spain, July 
2021. (see Results section) 

8. Transfer: apply the developed fault diagnostics methods to other RAS with metadata 
indicated in Body of Knowledge Section 2.2.1.2 

 

 

Figure 2: A summary of the fault diagnostics performance on the test datasets. 

 
 

https://www.york.ac.uk/assuring-autonomy/guidance/body-of-knowledge/implementation/2-2/2-2-1/2-2-1-2/
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Method  

This work proposes a novel fault diagnostics deep learning model to diagnose faults for 
Marine Autonomous System via domain adaption and transfer learning (Figure 3). The 
proposed model (i.e. Marine Autonomous System Net (MASNet)) is applied to address the 
challenging fault diagnostics tasks for distinct types of underwater gliders that are under-
observed and remotely operated in different regions and tasks by different institutions. 
Based on the improved Bidirectional Generative Adversarial Networks (BiGAN) developed in 
our previous study [7], we further extract invariant features from both the source and target 
domains, such that that model can detect unseen faults in the target domains with only a 
limited number of categories of data for training. The fault diagnostics results are evaluated 
against rule-based results. The MASNet show effectiveness in generalising invariant features 
present in the source and target domain datasets collected by distinct underwater gliders 
operated by different institutes in different regions hence achieving high fault diagnostics 
performance in the field test. 
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Figure 3: (a) The source domain data is collected by devices labelled as s1, s2, …, so in 
different missions and has cs different categories. The target domain data is collected by 

devices of distinct types in different deployments and can be operated by different institutes 
with distinct settings. The proposed MASNet learns from the source domain and target 
domain data to classify the categories of the test data which may not be present in the 

training data. (b) Based on an improved BiGAN-based anomaly detection model proposed in 
our previous study [7], we add an additional classifier to the model. A feature clustering loss 
term is added to align the categorical features of the source and target domains, using the 

encoded latent information from the encoder E. 

Results 

Figure 4 details the fault diagnostics results of the proposed MASNet applied to the target 
domain data collected in the FRONTIERS project in collaboration with SOCIB. It is apparent 
that the MASNet has correctly detected the wing loss scenarios (in comparison with the 
rule-based method of using the mean roll angle difference between the ascents and 
descents shown in Figure 3. In the early stage of the test deployment (until mid of 2021-07-
07), the MASNet has correctly labelled the glider’s status as healthy. Note this data collected 
over this period has been applied to align the invariant features between the target and 
source domains. The three scattered points (angle of list) are the times when the pitch angle 
was manually changed. In the later stage of the test, the MASNet has correctly labelled the 
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angle of list status (simulated by adjusting balancing pills on the starboard and port sides). 
The final stage is mostly labelled as either healthy or angle of list, which is mainly due to 
multiple incorrect trim and ballast settings were applied over this period, making the 
vehicle’s real status has never presented in normal scientific missions. 

 

 

 

Figure 4: Fault diagnostics results: predicted operating status of the Slocum G2 UG operated 
by SOCIB in the FRONTIERS project test, in comparison with the actual labels. 

Advantages of the approach 

• The applied approach is generic and is designed with an expandable architecture and 
can be extended to any RAS. 

• The training data can either be fully labelled or semi-labelled (via approaches such as 
MixMatch). 

• RAS normal variances are allowed. 

Limitations of the approach 

• The training dataset needs to broadly capture the normal and faulty patterns of the 
RAS operating state and the operating environment, states that vary from the 
patterns existing in the training dataset will cause confusion in understanding. 

• Fully labelled data may require extensive efforts but could provide better 
classification performance; semi-labelled data requires fewer labelling efforts but 
may be less accurate. 

• Existing data from the source domain and is sufficient to ensure effective domain 
adaption. 

• Training and validation require significant computational resources and time.  

• A pre-trained fault diagnostics model requires the same sensor/feature list in 
deployment. 
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